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SUMMARY 
Previous methods of calculating the internal impedance of rectangular and T-shaped conductors have made arbitrary 
assumptions about the form of the magnetic field. These have led to inconsistencies. A method is developed which 
necessitates less restrictive assumptions, thereby removing the inconsistencies. Results are compared for typical 
conductor sizes. 

List of  symbols 

a, b, c, d = 
J = 
E = 
V = 
I = 
B = 

g 

R = 
h I 

A = 
A*, A** = 
o- 
# = 

(o = 
~2 

m,/'/ 

C m = 

D n 
Pm, Q. = 
K = 
Re, Im  = 

dimensions of  conduc to r  or slot 
current  density 
electric field strength 
scalar potential  
current  (r.m.s.) in conduc to r  
flux density 
magnet ic  field strength with componen t s  Hx, Hy in the x, y coordinate  directions 
respectively 
inductance/uni t  length 
resistance/unit length 
vector potential  
modified vector potential  
single and double  cosine t ransforms of  A 
conduct ivi ty  of  conduc to r  
relative permeabil i ty of  conduc to r  
angular  frequency 
jco##oa 
t ransform parameters  
{(mz/c)2 +c~} * 

coefficients 
constant  of  integrat ion 
real, imaginary  parts  of  complex function respectively. 

1. Introduct ion 

In the a t tempt  to design more  effective machines,  problems previously investigated in a rather  
approximate  manner  are now being reconsidered and more  complete  solutions sought. This 
is no  criticism of the earlier investigators who had of  necessity to make  simplifying approxima-  
tions in order  to p roduce  results at all. Fo r  example if P u t m a n  [1] could have made  use of  
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124 D. E. Jones et al. 

present generation computers then his approach to the problem of the current distribution in a 
T-bar conductor in an iron slot would probably not have been based on the assumption that 
the flux throughout the slot was unidirectional. 

More recently Swarm and Salmon [2] have used modern facilities to remove this assumption 
in the conductor for the case of rectangular conductors in semi-enclosed slots. 

In the present investigation Putman's original problem of a T-bar conductor is reconsidered. 
This problem contains that of Swann and Salmon as a limiting case and indeed attempts to 
overcome an inconsistency in that their expression for J leads to a non-zero flux density up the 
neck of the slot, contrary to the hypothesis of an entirely transverse flux density in this region. 

The solution is obtained in terms of vector potentials in the two rectangular regions of the 
T-bar (see Figure 1), and the crux of the method is to match these vector potentials along the 
common boundary. Here use is made of a technique recently introduced into field analysis 
by Midgley and Smethurst [3]. Again the effective use of the technique presupposes the use of 
automatic computation. 

Recently Silvester [4] has formulated a method of solution for a conductor of arbitrary shape 
in any shape of slot. However rectangular and T-shaped conductors occur frequently in practice 
and the method proposed here has the advantage for these cases of using considerably less 
computer time. 

2. T-Shaped Conductor 

In this investigation the object is to obtain the current distribution in, and the effective impe- 
dance of, a T-bar conductor in a T-section slot. The following assumptions are made: 

~ l  I I ,, I t  ,, ," l l,, ~ ~ 

N N x~O.ex ~ ,V I i r i I S I i I I. 

/ ~  f / / / / / / / / 

Figure 1. T-bar conductor. 

a) the conductor completely fills the slot as shown in Figure 1 (this is generally valid since 
even if the conductor is insulated the electrical stresses are low and only thin insulation is 
required), 

b) the iron is of infinite permeability and is laminated so that eddy-currents in the iron may 
be neglected, 

c) outside the conductor, beyond DD', the natural assumptio n would be that the flux is 
directed across the slot perpendicularly to its walls i.e. H~=0 and Hy is constant and equal to 
U(2c). It transpires however that in solving the field problem within the conductor it is im- 
possible to specify a priori both H x = 0 and Hy = I/(2c) on DD', for then the problem would be 
mathematically overdefined. The procedure here adopted is to specify that Hy = I/(2c) on DD', 
solve the problem and then check that H x is indeed small compared with Hy. 
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Rectangular and T-shaped conductors 125 

It is in the last assumption that the present approach differs from that of Putman who as- 
sumed Hx--0 throughout the slot. 

2,1) Formulation of the problem 
From MaxweU's equations we have that in terms of instantaneous quantities 

VZA ' = --~#0 J 

J = aE 

OA' 
E + - - = V V  

~t 

(1) 
(2) 

(3) 

The current distribution is such that the potential V is constant over the cross-section of the 
conductor so that all vectors are in the axial direction of the slot. Assuming a sinusoidal varia- 
tion with time the quantities in equations (1), (2) may be replaced by r.m.s, phasors and equation 
(3) becomes 

E +jogA' = constant = fl, say (4) 

and with the substitution 

A = A' +jfl/o9 (5) 

equation (4) reduces to 

E = -j~oA (6) 

and on substitution into the phasor equivalents of equations (1), (2) there results 
~2 A 632 A 
~3X~ + ~y2 -- J##0 ao)A = c~2A (7) 

where 

~2 = J##0 ~ o .  

The definitions of A', A yield 

B = V A A ' = V A A  

so that, under the assumptions listed, the boundary conditions become 

~A 
- 0 on AA',  BC', B'C' 

#x 

OA #o I 
Qx 2c 

on DD' 

0A 
- - = 0  
~y 

on AB, A'B', CD, C'D'. 

Further it follows from symmetry that on X'X, Hx = 0, i.e. OA/Oy = 0. Consequently the solu- 
tion need only be obtained for the half-slot y >0. 

2.2) Solution for the vector potential 
The method of solution employed is to obtain the solutions in each of the regions OCDX, 
X'ABO in terms of the unknown ~A/Ox along the common boundary OC, in the form of in- 
finite series. Since, however, the coefficients in the series remain to be determined the series are 
truncated to N terms and the resulting approximations to A in the two regions equated along 
OC and to dA/Sx along OB, so providing the requisite number of equations for the determina- 
tion of the coefficients in the truncated series. Clearly the method is an approximation but the 
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degree of approximation can be checked by truncating at different values of N and comparing 
the final results. This practical approach to the estimation of accuracy seems preferable to a 
theoretical one, since in the latter, difficulties arise from the unknown dependence of P,,, Q, 
on m, n respectively. 

In region 1, OCDX 

02A1 02At 
0X 2 "t---~y2 = c~Aa (8) 

OA1/@=O on CD, OX; OAlfl?x= - #o i / 2c  on DX and we set OAi/Ox=f(y), say, on OC so 
that taking the finite cosine transform of equation (8) w.r.t, y there results 

dZA* m2rc2A* 2 , 
dx z c2 - cqA i ,  (9) 

where 

A~ = (~A i cos (mrcy/c)dy 
jo  

and at x = 0, 

dx 

at x = b ,  

dA~ 

- f l f (y)cos(mrcy/c)dy= P,, say 

- #~ 6m o 
dx 2 ' 

where fim,o is Kronecker's delta = 1 if m = 0  and 0 if m#0 .  
Application of the finite cosine transform w.r.t, x to equation (9) yields 

A**(m, n) = - Pro+ ( -  1)"#o(I/2)fim,o 
(m~/c) 2 + (nn/b) 2 + cdt (10) 

The inverse transform is given by [5] 

A**(0,0) 2 ~ A**t m O)cos(mTzy/c)+ 
A 1 -  bc + bc zZ=I i ~ , 

2 ~o 
+ -~c .~=1A** (0, n)cos(nrcx/b)+ 

4 ~ ~ A**(m,n) cos(m=y/c)cos(n~x/b) (11) 
-I- ~Cm= 1 n=l 

so that inserting the values for AT* from equation (10) and using the expression 

( -  1)" cos(nrcx/b) _ b cosh ~x 
,=-o~ (nrc/b)2 + 7 2 ~ sinh 7b 

to sum over n, there results 

- A i  - 
#oi cosh(axx) Po cosh{ax(b-x)}  + - -  + 
2ccq sinh(alb) cal sinh(a~b) 

2 cos(mrcy/c) cosh{Cm(b-x)}  +_ Pm 
Cm= 1 C m sinh(Cmb) 

where C 2 -  (mrt/c) 2 + ~ .  

(12) 

(13) 
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In the same way in region 2, X'ABO 

Qo cosh {c~2(a+x)} 
- A 2  = da2 sinh(e2a) 

where 

Q. = - f(y) cos(nzcy/d)dy 
o 

and 
0 2 = (nzc/d) 2 + 0~. 

2 ~ Q. cos(nrcy/d) cosh{D.(a+x)} 
+ d . = 1  D. 

Q.+ Po 

where 

sinh(D,a) 
(14) 

It remains to determine the P,., Q. and to this end the infinite summations in equations (13), 
(14) are truncated to N terms. 

Then at x=0,  aA/~x can be represented both a s  ~3Az/~X over 0<  y <  d and as OA1/Ox for 
0<  y <  c together with OAJOx=O for c<  y <  d so that 

f l  t3A2 fc OA1 cos(nzy/d)dy Ox x=oC~ 8x ~=o 

and substituting for OA 1/3x, 8A2/Ox at x = 0 from the truncated forms of equations (13), (14) 
and carrying out the integration yields -Q~176 / 

sin(nrcc/d) 1 N 
(nrcc/d) + --Cm=IZ k(m,n)Pm=O, l<_n< N (15) 

sin { (m/c + n/d) nc} m n 

+ (m/c + n/d) rc if --c # 3 '  
sin { (m/c- n/d) rcc} 

k(m, n)= - 
c if m - n  

c d" 

Similarly at x=0,  A, =A2 over 0<  y <  c so that 

A1 cos(mrcy/c)dy = A2 cos(mrcy/c)dy 
20 

and the same procedure leads to, for m = 0 

2a, sinh(alb ) + P~176  = coth( ,za)+ ~ Q, sin(nrcc/d) coth(D.a) (16) 
al ,= 1 D,(nr~/d) 

and for 1 <-m<N 

Pm coth(Cmb) = 1 N n~ C~m 2 Z k(m, coth(D.a). (17) 
n= t Dn 

Equations (15), (16), (17) provide 2N + 2 equations from which the coefficients Pro, 0 < m <- N 
and Q,, 0 <<_ n < N may be determined as indicated in Appendix 8.1. Insertion of these coefficients 
in the truncated forms of equations (13), (14) yields approximations to A throughout the con- 
ductor. The degree of approximation can be made as close as desired by increasing N. The 
choice of N is discussed briefly in Appendix 8.2. 

The current density follows immediately from equations (2), (6) as 

J = - jmaA.  (18) 

2.3) Effective impedance 
Taking the r.m.s, value for I, the complex power, P, per unit length can be written in terms of 
Poynting's vector as 
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P : fc(E A ffl)" ndl = -JC~ fc(A A ffI)" ndl ' (19) 

where C is the boundary of the conductor, n is a unit vector perpendicular to C and /~  is the 
conjugate complex of H. Only the tangential component of H gives non-zero components in 
the scalar triple product in the integrand of equation (19) and this is zero everywhere except 
on D'D (Figure 1) where it has the value I/(2c) so that equation (19) reduces to 

jcoI ( 
P 2c J_c A1 x=bdY" (20) 

A~J~= b is obtained from the truncated form of equation (13) so that carrying out the integra- 
tion in equation (20), and making use of the relation 

P = 12 (R +jX) 

where R, X are the effective resistance and reactance there results 

R+jX J2@~{ 2P o 1 } (21) 
= ~o c~ + ~ -  sinh(oqb) " 

3. Rectangular Conductor 

It might appear that the rectangular conductor shown in Figure 2 is a special case of the T-bar 
of the previous section. However, if the boundary conditions are considered in more detail a 
potential source of inconsistency is revealed�9 

Physically it is clear that at some distance along the neck of the slot say x > ~ then effectively 

"lX4-*"•J \ \ x I0,,o) 

/ / / , /  / / f / / / 

F i g u r e  2. R e c t a n g u l a r  c o n d u c t o r .  

H = Hy = I/(2c) and by implication Hx = 0. It would, therefore, appear to be desirable to choose 
a value x = b > ~ to be a boundary and specify that there 

1 ~A I 1 0A 
H y -  #or~X - 2 c '  H x - / ~ o  0y = 0.  

This implies that at x = b, A is a constant and thus it is desired to specify both the value of A 
and its normal derivative, and this leads to a mathematical problem which is overdefined. A 
choice has to be made between them and we follow Swann and Salmon in choosing to impose 
the condition on Hy, i.e. on the normal derivative, thus incorporating the fact that the total 
current is I. We differ from them in having the length b at our disposal whilst in their method b 
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Rectangular and T-shaped conductors 129 

was fixed as zero. This led to an inconsistency in that their expression for the current density 
J leads to a non-zero normal magnetic field strength over CC'. Our approach permits us to 
calculate the effective resistance and inductance and estimate the ratio of Hx/Hy at x = b for 
various values of b. For a given conductor the minimum length of the neck of the slot for which 
the solution is acceptable is then obtained. 

Then in CDD'C' 

V2A~ -= VZA1 = 0 

and this equation can be solved by the same transform methods used in Section 2.2. It is only 
necessary to note that 

dx ~ x  dx = - #o Hydy = 2 

so that AI' with m= 0 is given by 

AT(x, O) = cK - ~ x (22) 

to obtain the vector potential in the neck of the slot as 

A,  = K - #~  x 2 ~, Pm COS(mT~y/c) cosh{(b--x)mn/c} (23) 
2c c • = 1 mn/c sinh (bran~e) 

and matching A1, A2 along the boundary as before, there results 

Qo = #ol/2 

#o I sin(nnc/d) 1 N 
Q" 2 nnc/d + --Cm=l • Pink(m, n) = O, n r 0 (24) 

#olc d2 ~ Q, sin(nnc/d) coth(D,a) 
cK + 2~2coth(aza) + ,=1 O, nn/d = 0, m = 0  (25) 

P= 
coth(mnb/c) = 1 ~ (2, coth(D,a)k(m, n), m ~ 0 (26) 

mn/c d . = a D. 

Equations (24), (25), (26) provide 2N + 1 equations which may be solved for K, Pm (1 < m <  U), 
Q, (1 < n < N). Then use of Poynting's vector along CC' yields, on carrying out the integration 

ja~{ 4 ~ IP,.I 2 coth(bmzc/c!~ 
R + j X =  - ~ IK  + (27) 

#o c ,.= 1 mn/c ~" 

4. Some Computed Results 

Designers of squirrel-cage induction motors are mainly interested in the effective resistance 
and reactance of the rotor bar. The internal impedance of a T-shaped conductor is given 
in equation (21), and of a rectangular conductor in equation (27). In both cases the Poynting 
vector was integrated over the surface of the conductor. The resulting reactance components 
are therefore associated with the slot leakage flux existing within the conductor and the im- 
pedance is termed "internal". The leakage flux in the air space in the slot neck above the rect- 
angular conductor is not included. However, the influence of the possible 2-dimensional 
nature of the field in this region upon the field inside the conductor is taken into account by the 
solution. 

In developing the formulae of the preceding sections the M.K.S. system of units has been 
employed and in using the method all dimensions must be in metres. In the following discussion 
however the dimensions of conductors and slots are given in millimetres. 
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4.1) T-shaped Conductor. 
The r.m.s, phasor components of the magnetic field Hx and Hy are readily computed from equa- 
tion (13) or equation (14) using the knowledge that 

1 8A 1 (3A 
H x - t t o  ~y and Hy = P0 Ox 

The instantaneous magnetic field components can then be obtained from the phasor quantities. 
For example 

H~(x, y, t) = Re [x/~H~eJ~'t ] 

= Re [ ~ H ~ ]  cos ro t -  Im [.~/2H~] sin cot. 

At the instant when the total current in the conductor (x/2I cos cot) is zero we can obtain the 
instantaneous field distribution by examining the imaginary parts of H~ and Hy alone. Figure 3 
gives the distribution of the two components in the plane x =  - 1 mm. (see Figure 1), which is 
in the wide part of the conductor but close to the neck. Contrary to the usual assumption that 
the field is directed entirely across the slot, there is a substantial component H~ parallel to the 

4.Q~: 
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Figure 3. Field distribution in T-bar conductor i a=20 mrn, b=20-mm, c=2 mm, d=4 mm, x= " i  ram, I= 100A, 
f =  40 Hz. 
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Rectangular and T-shaped conductors 131 

centre line of the slot. The peak values of H~ occur at y = _ c where the bunching effect of the 
corner is greatest. 

Putman's method of calculating resistance and inductance is widely used by designers. Since 
it is based on the assumption that H~ is zero everywhere the values of the effective resistance 
and inductance (R, L) obtained by the two methods are compared in Table 1 for four typical 

TABLE 1 
Resistance and inductance of T-shaped conductors 

Conductor Frequency New method Putman's method 

size (mm) Hz R L R/R o L/L o R L R/R o L/L o 
& ref. mf2/m #H/m m ~ / m  #H/m 

a = 17 0.0001 0.05141 6.474 1.000 1.0000 0.05141 6.224 1.000 1.0000 
b = 25 5 0.1127 5.567 2.191 0.8598 0.1070 5.472 2.081 0.8792 
c = 2 10 0.2112 4.142 4.109 0.6397 0.2036 4.189 3.961 0.6730 
d = 8.5 30 0.3969 2.034 7.720 0.3141 0.3997 2.047 7.774 0.3290 
ref. A 50 0.4978 1.567 9.682 0.2420 0.4993 1.562 9.710 0.2509 

a = 10 0.0001 0.06250 7.102 1.000 1.0000 0.06250 6.943 1.000 1.0000 
b = 35 5 0.1405 5.451 2.247 0.7675 0.1372 5.452 2.195 0.7852 
c = 2 10 0.2276 3.743 3.642 0.5270 0.2263 3.784 3.621 0.5450 

d = 9 30 0.3850 2.028 6.160 0.2855 0.3853 2.022 6.165 0.2912 
ref. B 50 0.4961 1.581 7.937 0.2227 0.4952 1.579 7.924 0.2274 

a = 7 0.0001 0.08282 5.526 1.000 1.0000 0.08282 5.380 1.000 1.0000 
b = 28 5 0.1293 4.907 1.561 0.8879 0.1259 4.847 1.521 0.9009 
c = 2 10 0.2111 3.846 2.549 0.6959 0.2064 3.873 2.492 0.7200 
d = 9.25 30 0.3915 2.032 4.727 0.3676 0.3934 2.037 4.751 0.3786 
ref. C 50 0.4964 1.573 5.994 0.2847 0.4967 1.568 5.998 0.2915 

a = 15 0.0001 0.07220 3.892 1.000 1.0000 0.07220 3.633 1.000 1.0000 
b = 13 5 0.08737 3.814 1.210 0.9798 0.08452 3.578 1.171 0.9850 
c = 2 10 0.1285 3.603 1.780 0.9259 0.1187 3.427 1.644 0.9432 
d = 7.5 30 0.3624 2.436 5.020 0.6259 0.3379 2.476 4.680 0.6815 
ref. D 50 0.5200 1.728 7.202 0.4439 0.5088 1.791 7.047 0.4928 

conductors over a range of frequencies. Also included are the ratios R/Ro, L/Lo where Ro, L o 
are the so-called static resistance and inductance. These are calculated at a very low frequency 
(0.0001 Hz.) so that Ro is effectively the d.c. resistance. The values of L0 are compared in Ap- 
pendix 8.3 with those usually calculated at zero frequency on the assumption that the flux 
throughout the slot is unidirectional. 

It will be seen from the results that Putman's values are reasonably accurate, the error being 
in the range + 1 ~ ,  - 5 ~ .  

It is at the'low frequency that the maximum difference occurs between the inductance values 
calculated by the two methods. This is not surprising because, although the current distribution 
is uniform, th~ magnetic field in the slot is 2-dimensional. At higher frequencies the difference 
is less becausd the current is crowded into the narrow part of the conductor where the field is 
almost unidirectional. 

On the other hand, the effective resistance depends entirely upon the current distribution 
and so, at the base frequency of 0.0001 Hz, the two methods agree exactly. This is again true for 
the higher frequencies. However, when there is a substantial part of the total current flowing 
in the broad part of the conductor Putman's method yields a low value for the resistance. 

For all four conductors examined the ratio H~/Hy at points along the top of the conductor at 
DD' was found to be of order 10- lO or less. This approximates very closely the initial require- 
ment that the magnetic field strength Hx along DD' should be zero and so justifies the use of the 
method. 
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4.2) Rectangular conductor. 
In this case a feature of major interest is the determination of the value to be chosen for b, the 
distance up the neck of the slot beyond which effectively 

/-/, = i / ( 2 c ) ,  = 0 .  

Since at x = b 

2 ~ P,,sin(mzry/c) 

H~ - sinh ( mrc b / c ) ]'/0 C m=l  

an upper bound to the ratio HffH r is set by 

4 ~ IP,,I Hx 

U - #o l  z., sinh(mrcb/c) > - -  m=l  My 

Analytical investigation is hampered by the fact that Pm is not determined in analytic form. 
We, therefore, investigate numerically the effect of varying b with all other dimensions fixed 
and choose a conductor 8 mm wide and 20 mm deep with a slot opening of 4 mm (resistivity, 
2 .10 -8 f~-m). For  b = 100 mm the effective resistance and inductance are given in Table 2 

TABLE 2 

Frequency New method b = 100 mm Putman's method 

Hz R L R/R o L/L o R L R/R o L/L o 
m~/m #H/m mf~/m #H/m 

0.0001 0.12500 1 . 1 9 4 1  1.0000 1.0000 0.12500 1 . 0 4 5 9  1.0000 1.0000 
5 0.12673 1.1900 1 . 0 1 3 8  0.99652 0.12672 1 . 0 4 1 8  1 . 0 1 3 7  0.99608 

10 0.13179 1 . 1 7 7 9  1 . 0 5 4 3  0.98643 0.13175 1.0298 1.0540 0.98459 
30 0.17675 1.0724 1.4140 0.89803 0.17640 0.9246 1.4112 0.88400 
50 0.23600 0.9388 1.8880 0.78618 0.23515 0.7914 1.8812 0.75663 

TABLE 3 

b" mm 0.001 0.01 0.1 1 10 10 
L #H/m 0.9618 0.9604 0.9521 0.9390 0.9388 0.9388 
Upperbound U * * * .11 10 7 10-68 

�9 Not calculated since the series for U does not converge very quickly. 

in comparison with the results achieved by Putman's method which is of course independent 
of the choice of b. 

Since the major discrepancy occurs in the inductance the variation of this at 50 Hz was in- 
vestigated for varying b. The results are given in Table 3 together with the upper bound U of 
IHx/Hy[ at x = b .  

Hence one can infer that the correct inductance is obtained if b is chosen to be greater than 
1 mm, and in practice the neck length will usually fulfil this condition. 

It is interesting to note that  even with b = 0.001 mm where it is not possible to asert that 
Hx ~ Hy the error is less than 3 ~o. It was therefore considered pertinent to compare the result 
obtained by Swarm and Salmon [2] for which b is chosen as zero. The use of the equation (their 
equation (33)) from which their curves were computed yielded a value of 1.263 #H/m. On in- 
vestigating this discrepancy it was found that Swann and Salmon based their derivation of the 
internal impedance upon the electric field strength in the conductor surface at the centre of the 
slot opening. However the current density, and hence electric field, vary across the surface. It is 
therefore suggested that a Poynting integral would be more appropriate, a view shared by 
Annell [6]. This leads to k 2 in place ofk,  in the series of their equation (27). On arriving at their 
equation (33) from which the curves were computed an error in transcription seems have led 
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to the introduction of an unwanted factor of 2 into the series so that the corrected version of 
their equation (33) is, in their notation, 

Xe _ b (sinh(Zb/~) - sin(Zb/6) + 4b ~, sin2(nrcl/a) coth(n2nb/a) 
Rd 5 \cosh(2b/b)-cos(Zb/6) 6 ,:lz" (n~i/a)2 ~ j 

For our example this yields an inductance of 0.9666/~H/m in close agreement with the result 
b = 0.001 mm in Table 3. 

5. Conclusions 

An analytical method, suitable for automatic computation, has been developed for calculating 
the internal impedance of, and the magnetic field and current distribution in, T-shaped conduc- 
tors in electrical machine slots. Impedance calculations on typical conductors have shown that 
the simpler method of Putman [1], who assumed that the flux goes straight across the slot, 
is adequate if an error of the order of 5 % is acceptable. 

A similar solution has been obtained for rectangular conductors. In this case Putman's 
assumption can lead to large errors in the inductance, of the order of 15 % in the example chosen. 
The method removes the restricting assumption that the top of the conductor is bounded by a 
flux line [2]. However this assumption affects the inductance only by 3 % in the example chosen. 
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7. Appendix 

7.1) Determination of the coefficients Pro, Q, 
Equations (15), (16) and (17) are available for the determination of the 2 N + 2  unknowns 
(Pro, 0 < m _< N;  Q,, 0 < n < N) and can be written in the form: I/10  o F0 01 

0N,1 IN,N 0N,1 VN,5 I [!Q,I = N,1 
Wo 01,N 11,1 01,N QO O0 

WN, I UN,N ON,1 1N,N A U,1 N,1 

where a single subscript denotes a scalar and a double subscript i~j say denotes a matrix of order 
i.j. 

For example: PN, a = col {P1, P2, ..., PN}, Ij, j is a unit matrix of order L 0i,~ is a zero matrix 
of order i'j. 

This matrix may be reduced as follows: 
(a) Pre-multiply row 3 by So, row 4 by $1,~ and subtract from row 1. 
(b) Pre-multiply row 4 by VU,N and subtract from row 2 to obtain 

I1,1--SoWo--S1,NWN 1 --S1,NUN N O0 Po Xo 

. . . .  ON N I--VNNWN,1 1N~--V,~NUNN ON,1 ,~ ,,,~ 

[ W0 01'N 11.1 01,N [Q0 J ['00 lJ 
Wu,1 UN,N Ou,1 IN,NA QU,1 N, 

NOW writing ZN, N = [Iu, u -  VN, u Uu.u] - a pre-multiply row 2 by ZN.N. Further pro-multiply row 
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2 by S 1,N UN,N, subtract from row 1 and reduce the first term of row 1 to unity giving : 

[, o oo o l; 1 
--ZN,NVNNWN 1 IN 1 ON,1 , 

, 01 N Qo 0o W0 01,N 11 1 

WN,1 UN,N 0N,1 IN, N,1 0N,1 

where 

x0 
X~ = II,I _ So Wo_ S1,N WN,I _ S1,N UN,NZN,N VN,N WN, 1 

from which P0 ; PN,1 ; Q0 ; QN, x follow in order to yield : 

Po =X~ 

PN,1 = XoZN,N VN,N WN,1 

Qo = - X ;  Wo 

Q~,I = - x ;  U~,~ + U~,N z~,~ v~,~] WN,1 

It will be noted that this involves the inversion of only one N '  N matrix and considerably 
reduces the computation involved. 

7.2) Truncation of the Series. 
The series expressions must be truncated at some number of terms N before the solution can 
be computed. The change in the impedance was found to be negligible when N was varied be- 
tween 5 and 20. 10 terms were thus taken for all impedance calculations. On the other hand, 
calculation of the magnetic field at points inside the conductor may require 20 terms, or even 
more, close to the restriction at x = 0. 

7.3) The d.c. inductance. 
At zero frequency the current density is constant over the cross-section of the conductor and 
the d.c. internal inductance is usually calculated by making the assumption that the flux is 
entirely directed across the slot. Then flux density is given by 

= j / 2 ~  2(ad+bc) for O< x < a  

B ] poI ~ad - a }  for a < x < b  
~.2(ad+bc) ( c + x 

where x is now the distance from the base of the slot. 
In calculating the internal inductance it is the flux linkage of this flux which is required. The 

flux linkage with an element of length dx (and height 2d) in the region ABB'A' of Figure 1 is 

(~ + o/b d dx 
df21 = [2(ad+bc)J~ ~d~ 2 c _ a ~ b c ) }  a ~ c  

and for an element of length dx (and height 2c) in the region CDD'C' 

On carrying out the integrations w.r.t. ~ and then w.r.t, x there results 

L o O l + 0 2  #o [ a2bd2 a 3 d ~ _ }  
- I - 2(ad+bc) 2 [ c + ab2d + 3 -  + " (28) 
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The internal d.c. inductance of the rectangular bar may be obtained by putting b = 0 in equation 
28. 

These approximate d.c. values are compared in Table 4 with those calculated at 0.0001 Hz 
both by the new method and by Putman's method. 

TABLE 4 

Conductor Ref. Approx. d.c. inductance Inductance L 0 at 0.0001 Hz. 

#H/m New method Putman' method 

A 6.237 6.474 6.224 
B 6.961 7.102 6.943 
C 5.436 5.526 5.380 
D 3.699 3.892 3.633 
Rectangular 1.0472 1.1941 1.0459 

Comparison of the d.c. inductances and those at 0.0001 Hz by Putman's method show a small 
fall due to the frequency. Both however depend on the assumption that the flux is unidirectional. 
This restriction is removed in the new method and, assuming that here too the frequency gives 
rise to a small fall, it is apparent that the true d.c. inductance can considerably exceed the 
approximate value usually used. Indeed for the rectangular conductor investigated the error 
is 13~. 
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