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SUMMARY

Previous methods of calculating the internal impedance of rectangular and T-shaped conductors have made arbitrary
assumptions about the form of the magnetic field. These have led to inconsistencies. A method is developed which
necessitates less restrictive assumptions, thereby removing the inconsistencies. Results are compared for typical
conductor sizes.

List of symbols

a, b, ¢, d = dimensions of conductor or slot

= current density

= electric field strength

scalar potential

= current (r.m.s.) in conductor

= flux density

= magnetic field strength with components H,, H, in the x, y coordinate directions
respectively

= inductance/unit length

resistance/unit length

vector potential

modified vector potential

*, A** = single and double cosine transforms of 4

conductivity of conductor

relative permeability of conductor

angular frequency

Joppeo

transform parameters

{(mm/c)* +af}*

= {(nm/df+3}

coefficients

= constant of integration

real, imaginary parts of complex function respectively.
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1. Introduction

In the attempt to design more effective machines, problems previously investigated in a rather
approximate manner are now being reconsidered and more complete solutions sought. This
is no criticism of the earlier investigators who had of necessity to make simplifying approxima-
tions in order to produce results at all. For example if Putman [1] could have made use of
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124 D. E. Jones et al.

present generation computers then his approach to the problem of the current distribution in a
T-bar conductor in an iron slot would probably not have been based on the assumption that
the flux throughout the slot was unidirectional.

More recently Swann and Salmon [2] have used modern facilities to remove this assumption
in the conductor for the case of rectangular conductors in semi-enclosed slots.

In the present investigation Putman’s original problem of a T-bar conductor is reconsidered.
This problem contains that of Swann and Salmon as a limiting case and indeed attempts to
overcome an inconsistency in that their expression for J leads to a non-zero flux density up the
neck of the slot, contrary to the hypothesis of an entirely transverse flux density in this region.

The solution is obtained in terms of vector potentials in the two rectangular regions of the
T-bar (see Figure 1), and the crux of the method is to match these vector potentials along the
common boundary. Here use is made of a technique recently introduced into field analysis
by Midgley and Smethurst [3]. Again the effective use of the technique presupposes the use of
automatic computation.

Recently Silvester [4] has formulated a method of solution for a conductor of arbitrary shape
in any shape of slot. However rectangular and T-shaped conductors occur frequently in practice
and the method proposed here has the advantage for these cases of using considerably less
computer time.

2. T-Shaped Conductor

In this investigation the object is to obtain the current distribution in, and the effective impe-
dance of, a T-bar conductor in a T-section slot. The following assumptions are made:

SO N NE SN N N NS

7 7 7277 7277
Figure 1. T-bar conductor.

a) the conductor completely fills the slot as shown in Figure 1 (this is generally valid since
even if the conductor is insulated the electrical stresses are low and only thin insulation is
required), .

b) the iron is of infinite permeability and is laminated so that eddy-currents in the iron may
be neglected,

c) outside the conductor, beyond DD, the natural assumption would be that the flux is
directed across the slot perpendicularly to its walls i.e. H,=0 and H, is constant and equal to
I/(2¢). Tt transpires however that in solving the field problem within the conductor it is im-
possible to specify a priori both H, = 0 and H, = I/(2c) on DD, for then the problem would be
mathematically overdefined. The procedure here adopted is to specify that H,=1/(2c) on DD,
* solve the problem and then check that H, is indeed small compared with H,.
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Rectangular and T-shaped conductors 125

It is in the last assumption that the present approach differs from that of Putman who as-
sumed H,=0 throughout the slot.

2.1) Formulation of the problem
From Maxwell’s equations we have that in terms of instantaneous quantities

V2A' = —pu,d (1)
J = ¢E )

oA’
E+— =VV 3
+ (3)

The current distribution is such that the potential V is constant over the cross-section of the
conductor so that all vectors are in the axial direction of the slot. Assuming a sinusoidal varia-
tion with time the quantities in equations (1), (2) may be replaced by r.m.s. phasors and equation
(3) becomes

E+jwA’ = constant = f§, say 4)
and with the substitution

A=A'+jpjw 5)
equation (4) reduces to

E=—jwA (6)
and on substitution into the phasor equivalents of equations (1), (2) there results

0’4 0*A 2

W+—672—=j,uuoawA=a A (7)
where

o? = jupio o> .
The definitions of A’, 4 yield
B=VAA=VAA
so that, under the assumptions listed, the boundary conditions become

04

— =0 on AA’, BC', BC’

0x

@A ,u()I ’

il e on DD

‘;_‘; _0 on AB, AR, CD, C'D".

~Further it follows from symmetry that on X'X, H, =0, i.e. 34/0y=0. Consequently the solu-
tion need only be obtained for the half-slot y =0.

2.2) Solution for the vector potential

The method of solution employed is to obtain the solutions in each of the regions OCDX,
X’ABO in terms of the unknown dA/dx along the common boundary OC, in the form of in-
finite series. Since, however, the coefficients in the series remain to be determined the series are
truncated to N terms and the resulting approximations to A in the two regions equated along
OC and to dA4/0x along OB, so providing the requisite number of equations for the determina-
tion of the coefficients in the truncated series. Clearly the method is an approximation but the
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126 D. E. Jones et al.

degree of approximation can be checked by truncating at different values of N and comparing
the final results. This practical approach to the estimation of accuracy seems preferable to a
theoretical one, since in the latter, difficulties arise from the unknown dependence of P,, 0,
on m, n respectively.
In region 1, OCDX
0?4, 4 %A,
oxr T 8y2
04,/0y=0 on CD, OX; 0A,/0x= —pyl/2c on DX and we set 84,/dx=f(y), say, on OC so
that taking the finite cosine transform of equation (8) w.r.t. y there results
d?A*  mPn?Ax
dx* c?

= aiAf, 9)

A =j Ay cos(mny/c)dy
0
and at x=0,

ﬁ = jcf(y) cos(mny/c)dy = P,, say

dx o

at x=», '
aat _ ol
dx 2 ™o

where d,, o is Kronecker’s delta = 1 if m=0 and 0 if m#0.
Application of the finite cosine transform w.r.t. x to equation (9) yields

P+ (=1)116(1/2) 00
¥k - __m 22 10
At*m, m) (mn/c)* + (nm/b)* + o3 (10)
The inverse transform is given by [5]
fk 0
A= A1 b(co 0 bz Z_: A¥*(m, 0) cos (mmy/c) +
2 o)
b_ Z A¥*(0, n) cos(nmx/b)+
4 0 o9
+ 5 Y Y. A¥*(m, n) cos{mny/c) cos(nmx/b) (11)
m=1 n=1

so that inserting the values for A¥* from equation (10) and using the expression

2 (=1) cos(nmx/b) b cosh yx 2
,,:Z_w (nm/b)* + 72 — y sinh yb (12)
to sum over n, there reéults
_ pol cosh(ayx) = Py cosh{a,(b—x)}
7 2cay sinh(a;b) ' ca;  sinh(xyb)
2 & P, cos(mny/c) cosh{C,(b—x)}
.2 C, sinh(C,, b)

where C2=(mn/c)*+
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Rectangular and T-shaped conductors 127

In the same way in region 2, X’ABO

_ Qo cosh{ay(a+x)} Z 0, cos mry/d) cosh{D,(a+x)}
> da, sinh(a,a) = D, sinh(D,a)

(14)
where
- J ;f (v) cos(nmy/d)dy
and
D? = (nm/d)*+ o3 .

It remains to determine the P,, Q, and to this end the infinite summations in equations (13),
(14) are truncated to N terms.

Then at x=0, 6A4/0x can be represented both as dA4,/dx over 0< y<d and as 64,/0x for
0< y< ¢ together with 0A4,/0x=0 for c< y< d so that

JO i cos(nmy/d)dy = JO Hx

and substituting for d4,/0x, 0A4,/0x at x=0 from the truncated forms of equations (13), (14)
and carrying out the integration yields

cos(nmy/d)dy

x=0

x=

—Qo=F
sin(nme/d) 1 X B
Qn+POW C,,Zlkm n)P,=0, 1£n<N (15)
where
sin{{m/c—n/d)nc}  sin{(m/c+n/d)nc} g M
(mjc—n/d)n (m/c+n/d)n ¢ d

k(m, n) =

c if 221

c d

Similarly at x=0, A;=A4, over 0< y< ¢ so that

j- A cos(mny/c)dy = j A, cos(mny/c)dy
0 0
and the same procedure leads to, for m=0

BI 1 B _ Qo Q, sin nrcc/d)
20, sinh(o;b) + oy coth(x; b) = doy ——coth(x,a)+ nzl D, (n/d) coth(D,a) (16)

andfor 1 <m<N

P 1 X
Z ooth(Cob) = 5 3 kim n)%coth(D,,a). (17)

m n=1 n

Equations (15), (16), (17) provide 2N + 2 equations from which the coefficients P,,0 <m < N
and Q,,0 < n < N may be determined asindicated in Appendix 8.1. Insertion of these coefficients
in the truncated forms of equations (13), (14) yields approximations to 4 throughout the con-
ductor. The degree of approximation can be made as close as desired by increasing N. The
choice of N is discussed briefly in Appendix 8.2.

The current density follows immediately from equations (2), (6) as

J= —jwcA. ' (18)

2.3) Effective impedance

Taking the r.m.s. value for I, the complex power, P, per unit length can be written in terms of
Poynting’s vector as
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128 D. E. Jones et al.

P=JC(EAI~1)-ndl=—ja)L(AAfI)-ndl, (19)

where C is the boundary of the conductor, = is a unit vector perpendicular to C and H is the
conjugate complex of H. Only the tangential component of H gives non-zero components in
the scalar triple product in the integrand of equation (19) and this is zero everywhere except
on D'D (Figure 1) where it has the value I/(2c) so that equation (19) reduces to

-~
P=—’ij 4,

% dy . (20)

—c x=b

A,l,=p is obtained from the truncated form of equation (13) so that carrying out the integra-
tion in equation (20), and making use of the relation

P =I*(R+jX)
where R, X are the effective resistance and reactance there results

2P01}

. Jo
R+jx = 22 o |
a2 I sinh(a,b)

2ca, (21)

{uo coth(a,b) +

3. Rectangular Conductor

It might appear that the rectangular conductor shown in Figure 2 is a special case of the T-bar
of the previous section. However, if the boundary conditions are considered in more detail a
potential source of inconsistency is revealed.

Physically it is clear that at some distance along the neck of the'slot say x = & then effectively

MY
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Figure 2. Rectangular conductor.
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H=H,=1/(2c) and by implication H,=0. It would, therefore, appear to be desirable to choose
a value x=>b > ¢ to be a boundary and specify that there
104 I 104 _

ﬂo»ax—i, x_ﬂ_oa—y_

y

This implies that at x=>b, A4 is a constant and thus it is desired to specify both the value of 4
and its normal derivative, and this leads to a mathematical problem which is overdefined. A
choice has to be made between them and we follow Swann and Salmon in choosing to impose
the condition on H,, i.e. on the normal derivative, thus incorporating the fact that the total
current is I. We differ from them in having the length b at our disposal whilst in their method b
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Rectangular and T-shaped conductors 129

was fixed as zero. This led to an inconsistency in that their expression for the current density
J leads to a non-zero normal magnetic field strength over CC'. Our approach permits us to
calculate the effective resistance and inductance and estimate the ratio of H,/H, at x=b for
various values of b. For a given conductor the minimum length of the neck of the slot for which
the solution is acceptable is then obtained.

Then in CDD'C’

V2 ,1=V2A1=0

and this equation can be solved by the same transform methods used in Section 2.2. It is only
necessary to note that

dAs o4, C ol
& 0= J i joHydy‘ 2

so that A% with m=0 is given by

I
A*(x, 0)=cK ~ ‘%x ' (22)

to obtain the vector potential in the neck of the slot as

'uLIx _ 2 & P,cos(mmy/c) cosh {(b—x)mn/c}

— K — 23
A=K 2c c ,nz::l mmn/c sinh (bmm/c) 23)
and matching 4,, 4, along the boundary as before, there results
Qo= uol/2
pol sin(nrcc/d 1 X
—_ e 4 — P, k(m,n)=0, 0 24
< 2 nrc/d c ,,,; " n# 24)
uolc N Q, sin(nrc/d) coth(D,a)
cK+2dzcothoz2a g D njd , m=0 (25)
1
m}; e (mmb/c) = = nzl %coth (D,a)k(m,n), m#0 (26)

Equations (24), (25), (26) provide 2N + 1 equations which may be solved for K, P,,(1 < m < N),
Q,(1 £n £ N). Then use of Poynting’s vector along CC' yields, on carrying out the integration
4 XY |p,? Coth(bmrc/c)}

R+jX=-IK +
= L L

(27)

4. Some Computed Results

Designers of squirrel-cage induction motors are mainly interested in the effective resistance
and reactance of the rotor bar. The internal impedance of a T-shaped conductor is given
in equation (21), and of a rectangular conductor in equation (27). In both cases the Poynting
vector was integrated over the surface of the conductor. The resulting reactance components
are therefore associated with the slot leakage flux existing within the conductor and the im-
pedance is termed “internal”. The leakage flux in the air space in the slot neck above the rect-
angular conductor is not included. However, the influence of the possible 2-dimensional
nature of the field in this region upon the field inside the conductor is taken into account by the
solution.

In developing the formulae of the preceding sections the M.K.S. system of units has been
employed and in using the method all dimensions must be in metres. In the following discussion
however the dimensions of conductors and slots are given in millimetres.
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4.1) T-shaped Conductor. ‘ ‘
The r.m.s: phasor components of the magnetic field H, and H, are readily computed from equa-

tion (13) or equation (14) using the knowledge that
104
szia—A and H, = — — —.
Ho Oy Ho 0X

The instantaneous magnetic field components can then be obtained from the phasor quantities.
For example

H,(x, y,t)=Re[\/2H /']
=Re[,/2H,] cos wt—Im[,/2H,]sin wt.
At the instant when the total current in the conductor (/21 cos wt) is zero we can obtain the
instantaneous field distribution by examining the imaginary parts of H, and H, alone. Figure 3
gives the distribution of the two components in the plane x= —1 mm. (see Figure 1), which is
in the wide part of the conductor but close to the neck. Contrary to the usual assumption that
the field is directed entirely across the slot, there is a substantial component H, parallel to the

4QpQrT

3000

H, a&/m.

2000

1000

. . \
° 1 z \ 5 i
. . : ¥, mm. .
" Figure 3. Field distribution in T-bar conductor a=20 mm, b=20 mm, c=2 mm, d= 4 mm, x= —1 mm, I=100A,
f=40 Hz.
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Rectangular and T-shaped conductors 131

centre line of the slot. The peak values of H, occur at y= + ¢ where the bunching effect of the
corner is greatest.

Putman’s method of calculating resistance and inductance is widely used by designers. Since
it is based on the assumption that H, is zero everywhere the values of the effective resistance
and inductance (R, L) obtained by the two methods are compared in Table 1 for four typical

TABLE 1
Resistance and inductance of T-shaped conductors
Conductor Frequency New method Putman’s method
S;ere(;nm) Hz R L R/R, LjL, R L RIR, L/L,

) m/m  uH/m mQ/m  pH/m
a=17 0.0001 0.05141 6.474  1.000 1.0000 0.05141 6.224  1.000  1.0000
b=125 5 0.1127 5567  2.191 0.8598 0.1070 5472 2.081  0.8792
c=2 10 02112 4142 4109 0.6397 0.2036° 4189 3961  0.6730
d=285 30 03969 2.034 7720 0.3141 0.3997 2047 7774 03290
ref. A 50 04978 1567  9.682 0.2420 04993 1562 9710  0.2509
a=10 0.0001 0.06250 7.102  1.000 1.0000 0.06250 6.943  1.000  1.0000
b=35 5 0.1405 5451 2247 0.7675 0.1372 5452 2195 07852
c=2 10 0.2276  3.743  3.642 0.5270 0.2263 3784  3.621  0.5450
d=9 30 03850 2.028  6.160 0.2855 0.3853 2022 6165 0.2912
ref. B 50 04961 1581  7.937 0.2227 04952 1579 7924 02274
a=17 0.0001 0.08282 5.526  1.000 1.0000 0.08282 5380 1.000  1.0000
b=28 5 0.1293 4907 1561 0.8879 0.1259 4847 1521  0.9009
c=2 10 02111  3.846 2549 0.6959 0.2064 3873 2492  0.7200
d=925 30 03915 2032 4727 0.3676 0.3934  2.037 4751 03786
ref. C 50 04964  1.573- 5994 0.2847 04967 1568 5998  0.2915
a=15 0.0001 0.07220 3.892  1.000 1.0000 007220 3.633  1.000  1.0000
b=13 5 0.08737 3.814 1210 0.9798 0.08452 3578 1171  0.9850
c=2 10 0.1285 3603  1.780 0.9259 0.1187 3427 1644 09432
d=15 30 03624 2436 5020 0.6259 03379 2476 4680  0.6815
ref. D 50 05200 1.728  7.202 0.4439 0.5088 1.791  7.047 04928

conductors over a range of frequencies. Also included are the ratios R/R,, L/L, where Ry, L,
are the so-called static resistance and inductance. These are calculated at a very low frequency
(0.0001 Hz.) so that R, is effectively the d.c. resistance. The values of L, are compared in Ap-
pendix 8.3 with those usually calculated at zero frequency on the assumption that the flux
throughout the slot is unidirectional.

It will be seen from the results that Putman’s values are reasonably accurate, the error being
in the range +1%, —59%.

Itis at the'low frequency that the maximum difference occurs between the inductance values
calculated by the two methods. This is not surprising because, although the current distribution
is uniform, the magnetic field in the slot is 2-dimensional. At higher frequencies the difference
is less because the current is crowded into the narrow part of the conductor where the field is
almost unidirectional.

On the other hand, the effective resistance depends entirely upon the current distribution
and so, at the base frequency of 0.0001 Hz, the two methods agree exactly. This is again true for
the higher frequencies. However, when there is a substantial part of the total current flowing
in the broad part of the conductor Putman’s method yields a low value for the resistance.

For all four conductors examined the ratio H,/H, at points along the top of the conductor at
DD’ was found to be of order 10~ ° or less. This approximates very closely the initial require-
ment that the magnetic field strength H,along DD’ should be zero and so justifies the use of the
method.
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132 D. E. Jones et al.

4.2) Rectangular conductor.
In this case a feature of major interest is the determination of the value to be chosen for b, the
distance up the neck of the slot beyond which effectively

H,=1/(2¢), H,=0.
Since at x=>b
2 XY P,sin(mny/c)

H = - y n0Umye
HoC wm=1 sinh(mmb/c)

X

an upper bound to the ratio H,/H, is set by
4 g | Pl H
>

X

ol w=y sinh(mnb/c) = H,

y

Analytical investigation is hampered by the fact that P,, is not determined in analytic form.
We, therefore, investigate numerically the effect of varying b with all other dimensions fixed
and choose a conductor 8 mm wide and 20 mm deep with a slot opening of 4 mm (resistivity,
2:107% Q-m). For b= 100 mm the effective resistance and inductance are given in Table 2

TABLE 2
Frequency New method b = 100 mm Putman’s method
Hz R L R/R, L/L, R L R/R,  L/L,
m{)/m uH/m m)/m uH/m
0.0001 0.12500  1.1941  1.0000  1.0000 0.12500  1.0459  1.0000  1.0000
5 0.12673  1.1900  1.0138  0.99652 0.12672  1.0418  1.0137  0.99608
10 0.13179 11779  1.0543  0.98643 0.13175  1.0298  1.0540  0.98459
30 0.17675  1.0724 14140  0.89803 0.17640 09246 14112  0.88400
50 0.23600  0.9388  1.8880  0.78618 0.23515  0.7914  1.8812  0.75663
TABLE 3
b-mm 0.001 0.01 0.1 1 10 10
L yH/m 0.9618 0.9604 0.9521 0.9390 0.9388 0.9388
Upperbound U * * * A1 1077 1068

* Not calculated since the series for U does not converge very quickly.

in comparison with the results achieved by Putman’s method which is of course independent
of the choice of b.

Since the major discrepancy occurs in the inductance the variation of this at 50 Hz was in-
vestigated for varying b. The results are given in Table 3 together with the upper bound U of
|H,/H)| at x=b.

Hence one can infer that the correct inductance is obtained if b is chosen to be greater than
1 mm, and in practice the neck length will usually fulfil this condition.

It is interesting to note that even with b=0.001 mm where it is not possible to asert that
H, < H, the error is less than 3 9. It was therefore considered pertinent to compare the result
obtained by Swann and Salmon [2] for which b is chosen as zero. The use of the equation (their
equation (33)) from which their curves were computed yielded a value of 1.263 yH/m. On in-
vestigating this discrepancy it was found that Swann and Salmon based their derivation of the
internal impedance upon the electric field strength in the conductor surface at the centre of the
slot opening. However the current density, and hence electric field, vary across the surface. It is
therefore suggested that a Poynting integral would be more appropriate, a view shared by
Annell [6]. This leads to k7 in place of k, in the series of their equation (27). On arriving at their
equation (33) from which the curves were computed an error in transcription seems have led
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Rectangular and T-shaped conductors _ 133

to the introduction of an unwanted factor of 2 into the series so that the corrected version of
their equation (33) is, in their notation,

X, _ b [ sinh(2b/5)—sin(2b/9) 4b i sin?(nzl/a) coth (n2nb/a)>

R, ¢ cosh (2b/6) —cos(2b/<3 o= (nnlja)? n2nb/a

For our example this yields an inductance of 0.9666 pH/m in close agreement with the result
b = 0.001 mm in Table 3.

5. Conclusions

An analytical method, suitable for automatic computation, has been developed for calculating
the internal impedance of, and the magnetic field and current distribution in, T-shaped conduc-
tors in electrical machine slots. Impedance calculations on typical conductors have shown that
the simpler method of Putman [1], who assumed that the flux goes straight across the slot,
is adequate if an error of the order of 59/ is acceptable.

A similar solution has been obtained for rectangular conductors. In this case Putman’s
assumption canlead to large errorsin the inductance, of the order of 15 9/ in the example chosen.
The method removes the restricting assumption that the top of the conductor is bounded by a
flux line [ 2]. However this assumption affects the inductance only by 3 9, in the example chosen.
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7. Appendix

7.1) Determination of the coefficients P, Q,

Equations (15), (16) and (17) are available for the determination of the 2N +2 unknowns
(P, 0<m=N;Q, 0=<n=<N)and can be written in the form:

Li O So Siw| [Po X,
Ovi:  Inn Oni Vaw Pyil = |0ny
Wo Oyn Iy Opy Qo 0,
Wyi Usvnx Ony Iyw On.1 On,1

where a single subscript denotes a scalar and a double subscript i,j say denotes a matrix of order
i) ,
.For example: Py ; = col{P,, P,, ..., Py}, I; ; is a unit matrix of order j, 0, ; is a zero matrix
of order i-j.
This matrix may be reduced as follows:
(a) Pre-multiply row 3 by S, row 4 by S, y and subtract from row 1.
(b) Pre-multiply row 4 by ¥}, y and subtract from row 2 to obtain

II,I_SOVVO—-SLNWNJ _Sl,NUN,N OO OI,N PO XO
—VN,N WN,l IN,N_VN,NUN,N ON,l ON,N PN,l = ON,l
I/V() Ol,N 11,1 Ol,N QO 00
WN,l UN,N ON,l IN,N QN,l ON,l

Now writing Zy y=[Iyx— Vy.x Uy.n] ™ * pre-multiply row 2 by Z y. Further pre-multiply row
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134 D. E. Jones et al.

2 by Sy y Uy, subtract from row 1 and reduce the first term of row 1 to unity giving:

Il,l Ol,N 00 OI,N PO X(’)

—ZN,NVN,NWN,I IN,l ON,I ON,N PN,I _ ON,I

W Ouw T O | Qo | |0

WN,I UN,N ON,I IN,N QN,I ON,I
where

X; = Xo

11,1 _SOWO_SI,N WN,I _SI,N UN,NZN,N VN,N WN,I
from which Py; Py 15 Qo; Qn.1 follow in order to yield:

P, =Xj
PN,l = XézN,N VN,N WN,1
Qo = —XoW,

Oni=—Xo[Uyn+UnnZyy Van] Wi

It will be noted that this involves the inversion of only one N - N matrix and considerably
reduces the computation involved.

7.2) Truncation of the Series.

The series expressions must be truncated at some number of terms N before the solution can
be computed. The change in the impedance was found to be negligible when N was varied be-
tween 5 and 20. 10 terms were thus taken for all impedance calculations. On the other hand,
calculation of the magnetic field at points inside the conductor may require 20 terms, or even
more, close to the restriction at x = 0.

7.3) The d.c. inductance.

At zero frequency the current density is constant over the cross-section of the conductor and
the d.c. internal inductance is usually calculated by making the assumption that the flux is
entirely directed across the slot. Then flux density is given by

X

I —— fi
U 2(ad+ bo) or0<x<a
B:
I d
Tz%g—kb—c){a + x— a} fora<x<b,

where x is now the distance from the base of the slot. -
In calculating the internal inductance it is the flux linkage of this flux which is required. The
flux linkage with an element of length dx (and height 2d) in the region ABB'A’ of Figure 1 is

ﬂo[ OI b ( 1 bC >} d
S -5 d

d = { 2(a d+bc)f cde + c . 2 d+be) ad+be ™
and for an element of length dx (and height 2¢) in the region CDD'C’

,U.OI atb
0 = {oitvaa |, (€ o)t

On carrying out the integrations w.r.t. £ and then w.r.t. x there results
Q,+9Q, Ko {azbd2 a*d  b3c }
)

Ly, = = bzd ~ -
0 T~ 2(ad+be? tavidt 5T
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The internal d.c. inductance of the rectangular bar may be obtained by putting b =01in equation
28.

These approximate d.c. values are compared in Table 4 with those calculated at 0.0001 Hz
both by the new method and by Putman’s method.

TABLE 4
Conductor Ref. Approx. d.c. inductance ~ Inductance L, at 0.0001 Hz.
uH/m New method Putman’ method
A 6.237 6.474 6.224
B 6.961 7.102 6.943
C 5.436 5.526 5.380
D 3.699 3.892 -3.633
Rectangular 1.0472 1.1941 1.0459

Comparison of the d.c. inductances and those at 0.0001 Hz by Putman’s method show a small
fall due to the frequency. Both however depend on the assumption that the flux is unidirectional.
This restriction is removed in the new method and, assuming that here too the frequency gives
rise to a small fall, it is apparent that the true d.c. inductance can considerably exceed the

approximate value usually used. Indeed for the rectangular conductor investigated the error
is 13%.
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